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Chapter 1

The Euclidean space Rn

In Analysis 1 you have learned the fundamental concepts of differential and integral
calculus of real-valued functions in one real variable, known as Single Variable Calculus.
However, real-life phenomena often depend on a multitude of factors and it requires
more than just one variable to properly model such situations. This leads to the study
of the theory of differentiation and integration of functions in several variables, called
Multivariable Calculus. The mathematical stage on which the study of functions in
several variables unfolds is the n-dimensional Euclidean space Rn.

Before defining the n-dimensional Euclidean space and its intrinsic topology, let us
recall some basic notions commonly used in analysis and calculus.

N the natural numbers {1, 2, 3, 4, . . .},
Z the integers, i.e., signed whole numbers {. . . ,−2,−1, 0, 1, 2, . . .},
Q the rational numbers a

b
with a ∈ Z and b ∈ N,

R the real numbers,
C the complex numbers,

An open interval is an interval that does not include its boundary points and is
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6 CHAPTER 1. THE EUCLIDEAN SPACE Rn

denoted by parentheses. The open intervals are thus one of the forms

(a, b) = {x ∈ R : a < x < b},
(−∞, b) = {x ∈ R : x < b},
(a,+∞) = {x ∈ R : a < x},

(−∞,+∞) = R,

where a and b are real numbers with a ⩽ b. The interval (a, a) = ∅ is the empty set,
a degenerate interval. Open intervals are open sets in the topology of R.

A closed interval is an interval that includes all its boundary points and is denoted
by square brackets. Closed intervals take the form

[a, b] = {x ∈ R : a ⩽ x ⩽ b},
(−∞, b] = {x ∈ R : x ⩽ b},
[a,+∞) = {x ∈ R : a ⩽ x},

(−∞,+∞) = R,

Closed intervals are closed sets in the topology of R. Note that the interval R =
(−∞,+∞) is both open and closed at the same time.

A half-open interval is a finite interval that includes one endpoint but not the other.
It can be left-open or right-open, depending on which endpoint is excluded:

(a, b] = {x ∈ R : a < x ⩽ b},
[a, b) = {x ∈ R : a ⩽ x < b},

Note that half-open intervals are neither open nor closed sets in the topology of R.
Intervals of the form [a, b], [a, b), (a, b], (a, b) for a, b ∈ R with a ⩽ b are called

bounded intervals, whereas intervals like (−∞, b], (−∞, b), [a,+∞), and (a,+∞) are
unbounded intervals.

1.1 The vector space Rn

Given a positive integer n, the set Rn is defined as the set of all ordered n-tuples
(x1, . . . , xn) of real numbers. It is called the standard Euclidean space of dimension n,
or simply the n-dimensional Euclidean space.

We can represent an element of Rn either as an n-tuple, which is the same as a row
vector with n entries,

x = (x1, . . . , xn)

or as a column vector with n entries

x =


x1
...
xn

 .



1.1. THE VECTOR SPACE Rn 7

Both representations are common and widely used in the literature. We will generally
use column vectors to denote elements of Rn in calculations, and row vectors to denote
elements of Rn as input parameters of functions defined on Rn.

There are also different ways in which elements in Rn are denoted, the three most
common are

x, x, and x⃗.

In this text, we will predominantly use x for elements in R and x for elements in Rn

for n ⩾ 2.
If n = 1 then R1 = R corresponds to the real line.

0 x

If n = 2 then R2 corresponds to the 2-dimensional plane. A point in R2 is usually
written as either (x, y) or x = (x1, x2).

•
x = (x1, x2)

x2

x1

If n = 3 then R3 corresponds to the 3-dimensional space. A point in R3 is usually
written as eitehr (x, y, z) or x = (x1, x2, x3).

•
x3

x2

x1

x = (x1, x2, x3)
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The set Rn is an n-dimensional inner product vector space over the real numbers.
This means it is closed under addition, scalar multiplication, and endowed with an
inner product called the scalar product. The addition on Rn is defined coordinate wise
by

x + y =


x1
...
xn

+


y1
...
yn

 =


x1 + y1

...
xn + yn

 .
The multiplication of an element x ∈ Rn by a scalar λ ∈ R is defined as

λx = λ


x1
...
xn

 =


λx1
...

λxn

 .
The way in which addition and multiplication on Rn interact is described by the
distributive law, which asserts that

λ(x + y) = λx + λy. (Distributive Law)

The vector space Rn is also equipped with a scalar product ⟨·, ·⟩ : Rn × Rn → R
defined as

⟨x,y⟩ =
n∑

k=1
xkyk.

The scalar product satisfies the three following properties:
1. Positive-definiteness: ⟨x,x⟩ ⩾ 0 for all x ∈ Rn, with equality only for x = 0.
2. Symmetry: ⟨x,y⟩ = ⟨y,x⟩ for all x,y ∈ Rn.
3. Bilinearity: ⟨αx + βy, z⟩ = α⟨x, z⟩ + β⟨y, z⟩ for all x,y, z ∈ Rn and α, β ∈ R.
In linear algebra, a vector x is also an n × 1 matrix. Its transpose, written x⊤ =

(x1, . . . , xn), is therefore a 1 × n matrix, and we can interpret the scalar product of
two vectors x,y as the matrix product of x⊤ and y:

⟨x,y⟩ = x⊤y = (x1, . . . , xn) ·


y1
...
yn

 .

1.2 The Euclidean distance on Rn

To be able to extend the analytical methods presented in Analysis 1 to the space Rn,
it is important to endow Rn with a topological structure. On R we have used the
absolute value to define a distance d(x, y) = |x − y|, which was then used to define
notions such as convergence and continuity in R. We seek to generalize the absolute
value and the distance to the space Rn. To do so, we will introduce the concepts of a
norm and a metric.
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Definition 1.1 (The Euclidean norm on Rn). The Euclidean norm on Rn is the
function ∥ · ∥2 : Rn → R defined by

∥x∥2 =
√

⟨x,x⟩ =
(

n∑
k=1

x2
k

) 1
2

. (1.1)

It measures the distance of the point x to the origin 0 = (0, . . . , 0).

Observe that in one dimension, the Euclidean norm of a real number is the same
as the absolute value of that number. In general, the Euclidean norm satisfies the
following properties:

1. Non-negativity: ∥x∥2 ⩾ 0 for all x ∈ Rn, with equlity if and only if x = 0.
2. Homogeneity: ∥λ · x∥2 = |λ| · ∥x∥2 for all λ ∈ R and x ∈ Rn.
3. Triangle inequality: ∥x + y∥2 ⩽ ∥x∥2 + ∥y∥2 for all x,y ∈ Rn.

One of the most important properties of the scalar product is the Cauchy-Schwarz
inequality, which says that

|⟨x,y⟩| ⩽ ∥x∥2 ∥y∥2 (Cauchy-Schwarz)

The Euclidean norm ∥x∥2 also corresponds to the length of a vector x. The scalar
product ⟨x,y⟩ measures the angle between the two vectors x and y: if we designate θ
as the angle between x and y, then

⟨x,y⟩ = ∥x∥2∥y∥2 cos θ. (Angle Formula)

In particular if x and y are orthogonal vectors, i.e., θ = ±π/2, then ⟨x,y⟩ = 0. As a
consequence, we obtain the famous Pythagorean theorem, which says that if x and y
are orthogonal then

∥x + y∥2
2 = ∥x∥2

2 + ∥y∥2
2. (Pythagoras)

With the help of the Euclidean norm we can define a metric on Rn called the
Euclidean distance.

Definition 1.2 (The Euclidean distance on Rn). The Euclidean distance on Rn is the
function d(., .) : Rn × Rn → [0,∞) given by

d(x,y) := ∥x − y∥2 =
√

(x1 − y1)2 + . . .+ (xn − yn)2. (1.2)

The Euclidean distance captures the natural distance between two points in Rn. It
satisfies the following three properties:

1. Non-negativity: d(x,y) ⩾ 0 for all x,y ∈ Rn, with equality only when x = y.
2. Symmetry: d(x,y) = d(y,x).
3. Triangle inequality: d(x,y) ⩽ d(x, z) + d(y, z).
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1.3 The topology on Rn

The Euclidean distance d(x,y) induces a topology on Rn which underpins all analytical
considerations on Rn. In particular, notions such as continuity, convergence, differ-
entiablility and integrability are all defined in terms of this topology. The building
blocks of the topology on Rn are the so-called open balls.

Definition 1.3 (Open Ball). Let a ∈ Rn and r > 0. The set

B(a, r) = {x ∈ Rn : d(x, a) < r}

is called the open ball of radius r centered at a.

Open balls are the mathematical conceptualization of “nearness” and an important
use of open balls is to topologically distinguish distinct points: if x,y ∈ Rn and x ̸= y
then we can find a sufficiently small open ball centered at x and another sufficiently
small open ball centered at y such that these two balls don’t touch.

Open balls are instances of open sets. An open set is a set with the property that
if x is a point in the set then all points that are sufficiently near to x also belong to
the set. The mathematically precise definition is as follows:

Definition 1.4 (Open set). A subset U ⊆ Rn is open if for any point x ∈ U there
exists ε > 0 such that the open ball B(x, ε) is contained in U .

The empty set ∅ and the space Rn are open. Also, as was already mentioned, any
open ball B(a, r) is an open set.

Example 1.1 (Open Sets in Rn).
1. If a < b are real numbers then the interval

(a, b) = {x ∈ R : a < x < b}

is an open set. Indeed, if x ∈ (a, b), simply take r = min{x− a, b− x}. Both these
numbers are strictly positive, since a < x < b, and so is their minimum. Then the
“1-dimensional ball” B(x, r) = {y ∈ R : |x − y| < r} is a subset of (a, b). This
proves that (a, b) is an open set.

2. The infinite intervals (a,∞) and (−∞, b) are also open but the intervals

(a, b] = {x ∈ R : a < x ⩽ b} and [a, b] = {x ∈ R : a ⩽ x ⩽ b}

are not open sets.
3. The rectangle

(a, b) × (c, d) = {(x, y) ∈ R2 : a < x < b, c < y < d}

is an open set.

The antithetical notion to an open set is that of a closed set.

Definition 1.5 (Closed set). A subset C ⊆ Rn is closed if its complement Rn\C is
open.
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The empty set ∅ and the space Rn are the only sets that are both closed and open
at the same time. Intuitively, one should think of a closed set as a set that has no
“punctures” or “missing endpoints”, i.e., it includes all limiting values of points. For
instance, the punctured plane R2\{(0, 0)} is not a closed set.

An example of a closed set is the closed ball.

Definition 1.6 (Closed Ball). Let a ∈ Rn and r > 0. The set

B(a, r) = {x ∈ Rn : d(x, a) ⩽ r}

is called the closed ball of radius r centered at a. It is a closed set.

Example 1.2 (Closed Sets in Rn).
1. The closed interval

[a, b] = {x ∈ R : a ⩽ x ⩽ b}

is a closed set, because its complement R\[a, b] = (−∞, a) ∪ (b,∞) is an open set.
2. Infinite intervals with closed boundary [a,∞) and (−∞, b] are closed sets.
3. Halfopen intervals such as [a, b) or (a, b] are neither closed nor open sets.
4. Any set consisting of only finitely many points is a closed set.

The following two propositions describe how open and closed sets behave under
basic set manipulations such as unions, intersections, and set differences.

Proposition 1.1.
• If U ⊆ Rn is open and C ⊆ Rn is closed then U\C is open.
• If C ⊆ Rn is closed and U ⊆ Rn is open then C\U is closed.

Proposition 1.2.
• If U1, . . . , Uk ⊆ Rn are open then U1 ∪ . . . ∪ Uk and U1 ∩ . . . ∩ Uk are open.
• If C1, . . . , Ck ⊆ Rn are closed then C1 ∪ . . . ∪ Ck and C1 ∩ . . . ∩ Ck are closed.

To better grasp the difference between open sets and closed sets, we introduce the
concept of interior points, exterior points, and boundary points.

Definition 1.7 (Interior, Exterior, Boundary Points). Let S be a subset of Rn and x
a point in Rn.

(i) We call x an interior point of S if there exists r > 0 such that the ball B(x, r)
is contained in S.

(ii) We call x an exterior point of S if there exists r > 0 such that the ball B(x, r)
has empty intersection with S.

(iii) We call x a boundary point of S if it is neither an interior point nor an exterior
point for S. Equivalently, x is a boundary point of S if for every r > 0 the ball
B(x, r) has non-empty intersection with S without being entirely contained in
S.

Note that every point is either interior, exterior or on the boundary in relationship
to a set S.



12 CHAPTER 1. THE EUCLIDEAN SPACE Rn

Figure 1.1: Illustration of the difference between interior, exterior and boundary points
of a set S.

Definition 1.8 (Interior). The set of all interior points of a set S is called the interior
of S and it is denoted by S̊.

Definition 1.9 (Boundary). The set of all boundary points of a set S is called the
boundary of S and we use ∂S to denote it.

Definition 1.10 (Closure). The closure of S, denoted by S, is the set of points x ∈ Rn

with the property that for all r > 0 one has

B(x, r) ∩ S ̸= ∅.

Equivalently, the closure of S is the union of all its interior points and all its boundary
points.

Figure 1.2: The interior, closure and boundary sets of a set S.

Clearly, we have the set inclusions S̊ ⊆ S ⊆ S. To summarize, the closure of S
is S plus its boundary, its interior is S minus its boundary, and the boundary is the
closure minus the interior:

S̊ = S\∂S S = S ∪ ∂S, and ∂S = S \S̊.

Proposition 1.3. Let S ⊆ Rn. The interior S̊ is the largest open set contained inside
of S. The closure S is the smallest closed set that has S as a subset.
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Corollary 1.1. A set is open if and only if it is equal to its interior. On the other
hand, a set is closed if and only if it is equal to its closure, which is the same as saying
that it contains all its boundary points.

Example 1.3 (Closure, Interior, Boundary).
1. The sets (0, 1), [0, 1], [0, 1), and (0, 1] all have the same closure, interior, and bound-

ary: the closure is [0, 1], the interior is (0, 1), and the boundary consists of the two
points 0 and 1.

2. The sets

{(x, y) ∈ R2 : x2 + y2 < 1} and {(x, y) ∈ R2 : x2 + y2 ⩽ 1}

both have the same closure, interior, and boundary: the closure is the disc of
equation x2 + y2 ⩽ 1, the interior is the disc of equation x2 + y2 < 1, and the
boundary is the circle of equation x2 + y2 = 1.

3. The set

U = {(x, y) ∈ R2 : |y| < x2}

describes the region between two parabolas touching at the origin, shown in Fig. 1.3.
The set is open, so U = Ů . The closure of U is given by

U = {(x, y) ∈ R2 : |y| ⩽ x2}.

In particular, the closure contains the point (0, 0).

Figure 1.3: The origin belongs to the closure of the shaded region.

4. The unit ball is open in Rn and is defined by

B1 = B(0, 1) = {x ∈ Rn : ∥x∥2 < 1}

Its boundary is the sphere ∂B1 = {x ∈ Rn : ∥x∥2 = 1}.
5. Let f : R → R be a continuous function. The set

Gf = {(x, f(x)) ∈ R2 : x ∈ R}
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is known as the graph of f and represents a curve in R2. We have G̊f = ∅. Therefore
Gf = ∂Gf . The closed graph theorem says that graph G̊f is a closed set in R2 if f
is a continuous function.

6. Let B = {x ∈ R2 : ∥x∥2 < 1} and I = [0, 5]. The set S defined by

S = B × I =
{
x ∈ R3 : x2

1 + x2
2 < 1 and 0 ⩽ x3 ⩽ 5

}
is a cylinder. The set S is neither closed nor open. The boundary of S is given by

∂S = ∂B × I︸ ︷︷ ︸
E1

∪ B × ∂I︸ ︷︷ ︸
E2

,

where

E1 =
{
x ∈ R3 : x2

1 + x2
2 = 1 and 0 ⩽ x3 ⩽ 5

}
,

E2 =
{
x ∈ R3 : x2

1 + x2
2 < 1 and x3 ∈ {0, 5}

}
.

Definition 1.11 (Neighborhood of a point in Rn). Let x ∈ Rn and U ⊆ Rn. If x is
an interior point of U then U is called a neighborhood of x.

1.4 Sequences in Rn

Limits of sequences and limits of functions are fundamental notions in calculus, as you
already have seen in Analysis 1. Let us extend these principles to higher dimensions.
We write N = {1, 2, 3, . . .} for the set of natural numbers.

Definition 1.12 (Sequences in Rn). A sequence of elements of Rn is a function k 7→ xk

that associates to every natural number k ∈ N an element xk ∈ Rn. We write (xk)k∈N
to denote a sequence in Rn.

Although (xk)k∈N is by definition a sequence of n-tuples, we can also think of it as
an n-tuple of sequences by considering each coordinate as an individual sequence,

(xk)k∈N =


(x1,k)k∈N

...
(xn,k)k∈N

 .
Definition 1.13 (Convergent sequence). A sequence (xk)k∈N of points in Rn converges
to a point x ∈ Rn if for every ε > 0 there exists N > 1 such that when k ⩾ N , then
d (xk,x) < ε. In this case we call x the limit of (xk)k∈N and write

lim
k→+∞

xk = x.

Note that not every sequence has a limit, but if a sequence does then this limit is
unique. Sequences that possess a limit are called convergent, whereas sequences that
don’t possess one are called divergent.

It follows from Definition 1.13 that a sequence (xk)k∈N converges to x if and only
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if the sequence of distances d (xk,x) converges to 0, i.e.,

lim
k→+∞

xk = x ⇐⇒ lim
k→+∞

d (xk,x) = 0.

Convergence is also observed coordinate wise: A sequence (xk)k∈N converges to x if
and only if each coordinate of (xk)k∈N converges to the respective coordinate of x.
More precisely, if

(xk)k∈N =


(x1,k)k∈N

...
(xn,k)k∈N

 and x =


x1
...
xn


then

lim
k→+∞

xk = x ⇐⇒ lim
k→+∞

xi,k = xi for all i = 1, . . . , n.

Example 1.4 (Convergent and divergent sequences in Rn).
1. The sequence (xk)k∈N given by

xk =

 e−k

k
k+1

1√
k2−k−k


converges as k → +∞ to the limit

x =

 0
1

−2

 ,
because limk→+∞ e−k = 0, limk→+∞

k
k+1 = 1, and limk→+∞

1√
k2−k−k

= −2.
2. The sequence (xk)k∈N given by

xk =
(

0
1−(−1)k

2

)

diverges because it diverges in the second coordinate.

The following properties describe the arithmetic operations of sequences in the n-
dimensional Euclidean space and tell us that limits cooperate nicely with the vector
space structure of Rn.
Properties of limits of sequences. Let (xk)k∈N and (yk)k∈N be sequences in Rn

and let (λk)k∈N be a sequence in R.
1. Addition of sequences: If (xk)k∈N and (yk)k∈N both converge then so does

(xk + yk)k∈N and

lim
k→+∞

xk + yk = lim
k→+∞

xk + lim
k→+∞

yk.

2. Multiplication of sequences: If (xk)k∈N and (λk)k∈N both converge then so
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does (λkxk)k∈N and

lim
k→+∞

λkxk =
(

lim
k→+∞

λk

)
·
(

lim
k→+∞

xk

)
.

3. Inner product of sequences: If (xk)k∈N and (yk)k∈N both converge then so
does (⟨xk, yk⟩)k∈N and

lim
k→+∞

⟨xk, yk⟩ =
〈

lim
k→+∞

xk, lim
k→+∞

yk

〉
.

Definition 1.14 (Cauchy sequences). A sequence (xk)k∈N is a Cauchy sequence if for
every ε > 0 there exists N > 1 such that k, l ⩾ N implies d (xk,xl) < ε.

Theorem 1.1. Every convergent sequence (xk)k∈N is a Cauchy sequence and every
Cauchy sequence is convergent.

Proposition 1.4. Let S ⊆ Rn be a non-empty set and suppose x ∈ ∂S is a boundary
point of S. Then there exists a sequence of elements in S̊, x1,x2,x3, . . . ∈ S̊, such that

lim
k→+∞

xk = x.

The following example provides an illustration of the content of Proposition 1.4.

Example 1.5. Consider the open ball of radius 5 centered at the origin in R2,

B(0, 5) = {x ∈ R2 : ∥x∥2 < 5} = {(x, y) ∈ R2 : x2 + y2 < 25}.

The boundary of B((0, 0), 5) is the circle of radius 5 centered at the origin, i.e.,

∂B(0, 5) = {x ∈ R2 : ∥x∥2 = 5} = {(x, y) ∈ R2 : x2 + y2 = 25}.

Any point x ∈ ∂B(0, 5) of this circle takes the form

x =
(

5 cos θ
5 sin θ

)
, for some θ ∈ [0, 2π).

We can define a sequence

xk =
( 5k

k+1 cos θ
5k

k+1 sin θ

)
,

and note that limk→+∞ xk = x. So we see that x1,x2,x3, . . . is a sequence of points
inside the open ball B(0, 5) converging to the point x on the border .

Proposition 1.5. Let S ⊆ Rn be a non-empty subset of Rn and let (xk)k∈N be a
sequence of elements in S. If (xk)k∈N converges then the limit limk→+∞ xk = x must
belong to S, the closure of S.

Example 1.6. Consider the “halfopen” rectangle

S = [0, 1] × [0, 1).
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This is not a closed set, because the point (2
3 , 1), for example, is in the boundary ∂S

but not in S itself. Moreover, the sequence(
2
3
1
2

)
,

(
2
3
2
3

)
,

(
2
3
3
4

)
,

(
2
3
4
5

)
,

(
2
3
5
6

)
, . . .

is a sequence of points in the interior of S that converge to the point (2
3 , 1), which is

not part of S, but it is part of the closure of S.
Definition 1.15 (Bounded set). A subset E ⊆ Rn is bounded if it is contained in a
ball of finite radius centered at the origin:

E ⊆ B(0, R) for some R < ∞.

Note that a closed set need not be bounded. For instance, the interval [0,∞) is
closed, but it is not a bounded.
Definition 1.16 (Compact set). A subset C ⊆ Rn is compact if it is closed and
bounded.

Compactness is the basic "finiteness criterion" for subsets of Rn. An important char-
acterization of compact sets in Euclidean spaces is given by the Bolzano-Weierstrass
theorem. Before we can state this theorem, we need to recall what is a subsequence.
Definition 1.17 (Subsequence). A subsequence of a sequence (xk)k∈N is any sequence
of the form (xki

)i∈N, where (ki)i∈N is a strictly increasing sequence of positive integers.
If a sequence converges then any subsequence of it also converges to the same limit.

Theorem 1.2 (Bolzano-Weierstrass theorem in Rn). Let C ⊆ Rn be compact. Any
sequence (xk)k∈N of elements in C possesses a convergent subsequence (xki

)i∈N whose
limit is in C.

Definition 1.18 (Bounded sequences in Rn). A sequence (xk)k∈N is bounded if there
exists a constant C > 0 such that ∥xk∥2 ⩽ C for any k ∈ N.

Note that every convergent sequence is a bounded sequence, but the opposite is
in general not true. For example, the sequence xk = (−1)k is bounded and does not
converge. The following is an immediate corollary of the Bolzano-Weierstrass theorem.

Corollary 1.2. Each bounded sequence (xk)k∈N in Rn has a convergent subsequence
(xki

)i∈N.





Chapter 2

Real-valued functions in Rn

Multivariable calculus, also known as multivariate calculus, is the extension of calculus
in one variable to calculus with functions of several variables. We start by defining
real-valued functions in more than one variable.

2.1 Definition

Definition 2.1 (Real-valued function on E ⊆ Rn). Let E be a non-empty subset of
Rn. A function f : E → R that assigns to every element x ∈ E a unique real number
y = f(x) is called a real-valued function on E.

Given a function f : E → R, the domain of f is E, denoted dom(f) or dom f . In
theory, the domain should always be a part of the definition of the function rather
than a property of it, but in practice it is often the case that the domain is inferred
by the description of the function (see Examples 2.1 and 2.3 below).

The image (sometimes also called the range) of a function f is the set of all the
output values that f produces. We denote it by Im(f) and it is formally defined as

Im(f) = {f(x) : x ∈ E} = {y ∈ R : ∃x ∈ E with f(x) = y}.

Example 2.1. Let us find and sketch the domain of the function

f(x, y) =
√
x+ y + 1
(x− 1) .

The expression for f makes sense if the denominator is not 0 and the quantity under
the square root sign is nonnegative. So the domain of f is:

dom(f) = {(x, y) : x+ y + 1 ⩾ 0, x ̸= 1}.

The inequality x+ y + 1 > 0, or y > −x− 1, describes the points that lie on or above
the line y = −x − 1, while x ̸= 1 means that the points on the line x = 1 must be
excluded from the domain. See Fig. 2.1 for a sketch of this region.

19
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dom(f)

x

y

x + y + 1 = 0
x = 1

−1

−1

Figure 2.1: The domain of the function f(x, y) =
√

x+y+1
(x−1)

.

The relationship between the domain and the image of a function is described by
its graph. We use G(f) to denote the graph of a function f : E → R and it is given by

G(f) =
{(

x
f(x)

)
: x ∈ D

}
⊆ Rn+1.

Note that the graph of f is a subset of Rn+1. More precisely, the graph is the
hypersurface in Rn+1 corresponding to the set of all points (x1, . . . , xn, xn+1) ∈ Rn+1

that satisfy the equation

xn+1 = f(x1, . . . , xn).

Example 2.2. Consider the equation x+ y = z; as you learned in linear algebra, the
solutions to this equation describe a plane in R3. Now, compare this with the function
f(x, y) = x + y, a real-valued function in two variables. By definition, the graph of
f(x, y) consists of points (x, y, z) ∈ R3 where z = f(x, y). For f(x, y) = x + y, this
gives the equation of the plane x+y = z. Thus, the graph of f(x, y) = x+y is exactly
the plane x+ y = z.

Example 2.2 connects what you studied in linear algebra, where you worked with
linear equations like x+ y = z, to what you’re learning now in multivariable calculus.
But there’s more! With multivariable functions, you can describe not just planes, but
much more complex geometric surfaces, as this next example illustrates.

Example 2.3. Consider the real-valued function f(x, y) =
√

1 − x2 − y2, which is a
function in 2 variables. The natural domain of this function is dom(f) = {(x, y) ∈
R2 : x2 + y2 ⩽ 1}, which is the closed disc of radius 1 centered at the origin. The
image of f is Im(f) = [0, 1] and the graph G(f) = {(x, y, z) ∈ D × R, z = f(x, y)}
coincides with the set of solutions to the equations

x2 + y2 + z2 = 1 and z ⩾ 0.

In other words, the graph of the function is a semi-sphere, see Fig. 2.2 below.
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Figure 2.2: Graph of the function f(x, y) =
√

1 − x2 − y2.

Example 2.4. In physics, the functions f : Rn → R are often called scalar fields.
The gravitational potential of a mass or the electric potential of an electric charge are
examples of scalar fields:

ϕ : R3\{0} → R, ϕ(x) = k

∥x∥2

for a real constant k. In mechanics, we often consider systems where the energy is
conserved (Hamiltonian systems). For the movement of a particle of mass m in space,
subject to the potential V (x), its energy is a real-valued function of its momentum
p = mv here v is the velocity and x the position in space:

E : Rn × Rn → R, E(p,x) = ∥p∥2
2

2m + V (x).

The movement follows the lines at which the energy E is constant. These lines are
called “contour lines” and they are special cases of so-called level sets, which we define
and discuss next.

2.2 Level Sets

Definition 2.2 (Level set). Let f : E → R, E ⊆ Rn(E ̸= ∅). Given a real number
c ∈ Im(f), we call the set

Lc(f) = {x ∈ D : f(x) = c} = f−1({c})

the level set of f at height c. If c /∈ Im(f), then Lc(f) = ∅.
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Figure 2.3: The figure displays the graph of a function in 2 variables together with an
illustration of its level curves in the xy-plane. One can also think of level curves as the
projection of the horizontal traces onto the xy-plane, where a horizontal trace is a line
formed by intersecting the graph of the function with a plane parallel to the xy-plane.

Level sets of functions in 2 variables f : R2 → R are sometimes also called level
curves (or contour lines). It represents all the points where f has "height" c. A
collection of contour lines is called a contour map. Contour maps are very helpful for
visualizing functions, and they are most descriptive if the level curves are drawn for
equally spaced heights, see Fig. 2.4.

Figure 2.4: Contour map of participation as a function in two variables, the longitude
and latitude coordinates on earth.

In summary, we now have learned of two ways of graphically representing a real-
valued functions in two variables. The first way is by its graph, which is a hypersurface
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in R3, and the second is by a contour map, the projection of its contour lines onto the
plane R2. In Fig. 2.5 below you can see these two methods juxtaposed.

(2-x^3+6*y^4+y^3+x^4+6*x^4*y^2)*exp(-x^2-y^2*1.2)

–2

–1

0

1

2

x

–2

–1

0

1

2

y

0

1

2

–2

–1

1

2

y

–2 –1 1 2

x

Figure 2.5: Depiction of graph (left) and contour diagram (right) of the same function
in 2 variables.

Example 2.5. Consider the same function as in Example 2.3, that is, f(x, y) =√
1 − x2 − y2, and let us try to produce a simple contour diagram for it. By definition,

the level curve of f at height c is Lc(f) = {(x, y) :
√

1 − x2 − y2 = c} ⊆ R2. In Fig. 2.6
we see the level curves of this function at heights c = 0, 1

2 , 1, denoted by L0(f), L 1
2
(f),

and L1(f).

L1(f)

L 1
2

(f)

L0(f)

x

y

Figure 2.6: Level curves of the function f(x, y) =
√

1 − x2 − y2 at heights c = 0, c = 1
2 ,

and c = 1.

Example 2.6. Let f(x, y) = xy−1√
y−x2

, whose domain is dom(f) = {(x, y) ∈ R2 : y >
x2}. Notice that dom(f) is open and unbounded.
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Figure 2.7: The figure displays a series of level curves for the function f(x, y) = xy−1√
y−x2

passing through the point (1, 1). As we will explore subsequently, this indicates that
the limit of f(x, y) as (x, y) approaches (1,1) is not well-defined.

2.3 Limits
Definition 2.3 (Bounded function). A function f : E → R is bounded if there exists
a number M ∈ [0,∞), such that |f(x)|⩽M for all x ∈ E. In this context, we call M
an upper bound of f , or say that f is bounded by M .
Definition 2.4. Let f : E → R with E ⊆ Rn. We say that f is defined in a neighbor-
hood of x0 ∈ Rn if x0 is an interior point of E ∪ {x0}. That is, there exists δ > 0 such
that B(x0, δ) ⊆ E ∪ {x0}.

In the above definition, it is possible that x0 /∈ E. In other words, it is possible
for a function to be defined in a neighborhood of x0 ∈ Rn without being defined at x0
itself.
Example 2.7. Consider the function f(x) = 1

∥x∥ whose domain equals dom(f) =
{x ∈ Rn : ∥x∥ ≠ 0} = Rn\{0}. Although this function is not defined at 0, it is defined
in a neighborhood of 0.

We are concerned with points where the function is defined in a neighborhood
around the point, because this is necessary to properly define the limit of a function at
that point. If the function is not defined in the neighborhood of a point, then it is not
always possible to talk about the limit of the function at that point without running
into mathematical contradictions.
Definition 2.5 (Limit of a function). Let E be a subset of Rn, f : E → R a function



2.3. LIMITS 25

with domain E and assume f is defined in a neighborhood of the point x0 ∈ Rn. We
say that f has a limit l ∈ R at x0 and write

lim
x→x0

f(x) = l,

if for all ε > 0 there exists δ > 0 such that for all x ∈ E,

0 < ∥x − x0∥ ⩽ δ =⇒ |f(x) − l|⩽ ε

Note that the limit of a function at a point does not always exist. But if it does
exists then it is unique, which means that a function has at most one limit at a given
point.

Example 2.8. Let f : R2 → R be the function defined by

f(x, y) =


x3+y3

x2+y2 if (x, y) ̸= (0, 0)
0 if (x, y) = (0, 0)

Let’s calculate its limit as (x, y) approaches (0, 0). We will learn several different
methods of finding the limit of a function at a point (see, for example, the Squeeze
Theorem below), but the most standard method consists of simply verifying Defini-
tion 2.5. Given the relation 0 ⩽

√
x2 + y2, we have

|f(x, y)| = |x+ y| |x2 − xy + y2|
x2 + y2 ⩽ (|x| + |y|)x

2 + |x||y| + y2

x2 + y2

⩽ (|x| + |y|)
x2 + |x||y| + y2 + 1

2(|x| − |y|)2

x2 + y2

= (|x| + |y|)
3
2x

2 + 3
2y

2

x2 + y2

⩽ 2
√
x2 + y2

3
2x

2 + 3
2y

2

x2 + y2 = 3
√
x2 + y2 = 3∥(x, y)∥2.

This shows that as long as δ < ε
3 we have ∥(x, y)∥2 < δ =⇒ |f(x, y)| ⩽ ε. According

to Definition 2.5, this means exactly that limx→(0,0) f(x) = 0.

Proposition 2.1 (Characterisation of limits by sequences). Let E ⊆ Rn,x0 ∈ Rn

and assume f : E → R defined on a neighbourhood of x0, and l ∈ Rn. The following
statements are equivalent:

1. limx→x0 f(x) = l.
2. limn→∞ f(an) = l for every sequence (ak)k∈N in E\{x0} converging to x0.

Properties of limits of functions. Assume limx→x0 f(x) and limx→x0 g(x) exist.
1. Linear combinations: For constants α, β ∈ R, we have

lim
x→x0

(αf(x) + βg(x)) = α
(

lim
x→x0

f(x)
)

+ β
(

lim
x→x0

g(x)
)
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2. Products:

lim
x→x0

(f(x) · g(x)) =
(

lim
x→x0

f(x)
)

·
(

lim
x→x0

g(x)
)
.

3. Quotients: If limx→x0 g(x) ̸= 0, then

lim
x→x0

(
f(x)
g(x)

)
= limx→x0 f(x)

limx→x0 g(x) .

4. Compositions: Let a = (a1, . . . , an) ∈ Rn and b = (b1, . . . , bn) ∈ Rn be given. If
limx→a f(x) exists, and gi : R → R are functions such that limx→bi

gi(x) = ai for
each i, then

lim
x→b

f(g1(x1), g2(x2), . . . , gn(xn)) = lim
x→a

f(x).

Example 2.9. Let us calculate

lim
(x,y)→(−3,4)

1 + xy

1 − xy
.

Since lim(x,y)→(−3,4) x = −3 and lim(x,y)→(−3,4) y = 4, it follows from properties 1 and 2
of limits of functions that

lim
(x,y)→(−3,4)

1 + xy = 1 + ( lim
(x,y)→(−3,4)

x)( lim
(x,y)→(−3,4)

y) = 1 + (−3) · 4 = −11.

Similarly, we obtain lim(x,y)→(−3,4) 1 − xy = 13. Since the limit of the numerator
and denominator exist and the denominator does not converge to 0, it follows from
property 3 of limits of functions that

lim
(x,y)→(−3,4)

1 + xy

1 − xy
= lim(x,y)→(−3,4) 1 + xy

lim(x,y)→(−3,4) 1 − xy
= −11

13 .

Example 2.10. Let f : R2 → R be the function defined by

f(x, y) =


xy
x2+y2 if (x, y) ̸= (0, 0)
0 if (x, y) = (0, 0).

The graph of this function is depicted in Fig. 2.8 below. What is the limit of this
function as (x, y) approaches (0, 0)? To answer this question, note that limt→0 f(t, t) =
1
2 , whereas limt→0 f(t, 0) = 0. Since these two limits are different from one another, it
follows from property 4 of limits of functions that the limit as (x, y) approaches (0, 0)
does not exist. This can also be observed graphically. The graph of f is shown in
Fig. 2.8 and contains the two lines {(x, 0, 0) : x ∈ R} and {(0, y, 0) : y ∈ R}, as well
as the half-lines {(t, t, 1

2) : t ∈ (0,+∞)} and {(t, t, 1
2) : t ∈ (−∞, 0)}.
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Figure 2.8: Graph of the function f(x, y) = xy
x2+y2 .

Example 2.11 (The problem with limits in several variables). Let f : R2 → R2 be a
function in two variables; we would like to determine the limit

lim
(x,y)→(0,0)

f(x, y).

A (naïve) idea is to compute the two iterated limits:

lim
x→0

lim
y→0

f(x, y) or lim
y→0

lim
x→0

f(x, y).

If these two limits exist and coincide, one might then be led to believe that the limit of
the function at (0, 0) is equal to 0. However, this is note true! For example, consider
the function

f(x, y) =


xy
x2+y2 , if (x, y) ̸= (0, 0),
0, if (x, y) = (0, 0).

For this particular function, we find that the iterated limits are:

lim
x→0

lim
y→0

f(x, y) = lim
x→0

lim
y→0

xy

x2 + y2 = lim
x→0

0
x2 + 0 = 0,

lim
y→0

lim
x→0

f(x, y) = lim
y→0

lim
x→0

xy

x2 + y2 = lim
y→0

0
0 + y2 = 0.

However, instead having the two variables approach 0 one after the other, we can have
them approach zero simultaneously, for example along the diagonal x = y. In this
case, setting both x and y equal to t and letting t go to zero, we obtain

lim
t→0

f(t, t) = lim
t→0

t · t
t2 + t2

= lim
t→0

1
2 = 1

2 ,

which yields a different result. Since we can approach (0, 0) in two different ways and
obtain different results, it means that the limit does not exist.
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→ 0

→ 1
2

→ −1
2

A next idea would be to test all possible directions,

lim
t→0

f(αt, βt),

with α, β ∈ R not both zero (thus covering all lines of equation βx − αy = 0, which
are all lines passing through 0). If all the limits along all the lines passing through 0
exist and coincide, can we conclude that the limit exists? The answer is still no! This
is because we might obtain a different result when following a trajectory that is not a
straight line.

→ 0 → 1
2

For example, if f : R2 → R is defined by

f(x, y) =


xy2

x2+y4 , if (x, y) ̸= (0, 0),
0, if (x, y) = (0, 0).

then for any α, β ∈ R, we have

lim
t→0

f(αt, βt) = lim
t→0

αβ2t3

α2t2 + β4t4
.
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If α = 0, then β ̸= 0 and we obtain 0. Otherwise,

lim
t→0

f(αt, βt) = lim
t→0

αβ2t

α2 + β4t2
= 0
α + 0 = 0.

We obtain 0 in all directions. However,

lim
t→0

f(t2, t) = lim
t→0

t4

t4 + t4
= 1

2 .

Again, this means that the limit does not exist.

The above example shows that if the iterated limits exist and are the same, this
does not necessarily imply that the limit of the function exists. However, the converse
is true, as the following proposition illustrates.

Proposition 2.2 (Permutation of limits). Let f : R2 → R be a function such that
lim(x,y)→(a,b) f(x, y) = l. Suppose, moreover, that for every x ∈ R, the limit limy→b f(x, y)
exists and that for every y ∈ R, the limit limx→a f(x, y) exists. Then,

lim
x→a

(
lim
y→b

f(x, y)
)

= lim
y→b

(
lim
x→a

f(x, y)
)

= l

Theorem 2.1 (Squeeze Theorem - Théorème des gendarmes). Let E ⊆ Rn, and
functions f, g, h : E → R be defined on a neighborhood of x0 ∈ Rn. If

lim
x→x0

f(x) = lim
x→x0

g(x) = l

and there exists α > 0 such that for all x ∈ E,

0 < ∥x − x0∥ < α =⇒ f(x) ⩽ h(x) ⩽ g(x)

then

lim
x→x0

h(x) = l.

Example 2.12. Let us demonstrate that the limit of the function f : R2 → R defined
by

f(x, y) =
xy ln(|x| + |y|) if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)

is zero as (x, y) approaches (0, 0) (see Fig. 2.9). On one hand, for every element (x, y)
in R2 satisfying 0 <

√
x2 + y2 < 1:

0 ⩽ |f(x, y)| = |xy ln(|x| + |y|)| ⩽ |(|x| + |y|) ln(|x| + |y|)|.

On the other hand, since limt→0+ t ln t = 0 and lim(x,y)→(0,0)(|x| + |y|) = 0, it follows
that:

lim
(x,y)→(0,0)

|(|x| + |y|) ln(|x| + |y|)| = 0.
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Therefore, using the Squeeze Theorem, we obtain that

lim
(x,y)→(0,0)

|f(x, y)| = 0

which implies that lim(x,y)→(0,0) f(x, y) = 0.

Figure 2.9: Graph of the function f(x, y) = xy ln(|x| + |y|).

Limits of functions in two variables

Theorem 2.2 (Squeeze Theorem in Polar Coordinates). Let D ⊆ R2, (x̃, ỹ) ∈ R2,
f : D → R be defined in the neighborhood of (x̃, ỹ) and l ∈ R. Then,

lim
(x,y)→(x̃,ỹ)

f(x, y) = l

if and only if there exists δ > 0 and a function ψ : (0, δ) → R such that
(i) limr→0+ ψ(r) = 0
(ii) ∀θ ∈ [0, 2π) we have |f(x̃+ r cos θ, ỹ + r sin θ) − l| ⩽ ψ(r)

Example 2.13. Let f : R2\{(0, 0)} → R be defined by

f(x, y) = x cos
(

1
x2 + y2

)
.

Let’s discuss the limit

lim
(x,y)→(0,0)

f(x, y).

Step 1: Testing the directions. We compute

lim
r→0+

f(r cos θ, r sin θ) = lim
r→0+

r cos θ cos
( 1
r2 cos2 θ + r2 sin2 θ

)

= lim
r→0+

r cos θ cos
( 1
r2

)
.
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Since

−1 ⩽ cos
( 1
r2

)
⩽ 1,

it follows that

= 0 · cos θ = 0.

Thus, l = 0 is independent of θ.
Step 2: Applying the criterion. We have

|f(r cos θ, r sin θ) − l| =
∣∣∣∣r cos θ cos

( 1
r2 cos2 θ + r2 sin2 θ

)
− 0

∣∣∣∣
=
∣∣∣∣r cos θ cos

( 1
r2

)∣∣∣∣ .
Since

| cos θ| ⩽ 1,

we get

⩽
∣∣∣∣r cos

( 1
r2

)∣∣∣∣ → 0.

By setting ψ(r) =
∣∣∣r cos

(
1
r2

)∣∣∣, we have

lim
r→0+

ψ(r) = 0.

Moreover, for all θ ∈ [0, 2π],

|f(r cos θ, r sin θ) − l| ⩽ ψ(r).

Thus, the criterion is satisfied, and we conclude that

lim
(x,y)→(0,0)

f(x, y) = 0.

Example 2.14. Let f : R2\{(0, 0)} → R be defined by

f(x, y) = 2|x|
x2 + |x| + y2 .

Let’s discuss the limit

lim
(x,y)→(0,0)

f(x, y).

Step 1: Testing the directions. We compute

lim
r→0+

f(r cos θ, r sin θ) = lim
r→0+

2r| cos θ|
r2 cos2 θ + r| cos θ| + r2 sin2 θ
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= lim
r→0+

2r| cos θ|
r2 + r| cos θ|

= lim
r→0+

2| cos θ|
r + | cos θ|

=
0 if cos θ = 0

2 if cos θ ̸= 0

Thus, if we choose θ1 = 0 and θ2 = π
2 , we obtain

lim
r→0+

f(r cos θ1, r sin θ1) = 2

lim
r→0+

f(r cos θ2, r sin θ2) = 0,

and therefore, the limit limr→0+ f(x, y) does not exist.

Example 2.15. Let f : R2\{(0, 0)} → R be defined by

f(x, y) = x

8 + cos
(

1
x3+y3

)
Let’s discuss the limit

lim
(x,y)→(0,0)

f(x, y).

We use polar coordinates.
Step 1: Directional Test. We compute

lim
r→0+

f(r cos θ, r sin θ) = lim
r→0+

r cos θ
8 + cos

(
1

r3(cos3 θ−sin3 θ)

)
At this stage, note that since cos(...) ⩾ −1, we have

8 + cos
(

1
r3(cos3 θ − sin3 θ)

)
⩾ 7.

Since the numerator tends to 0, it follows that

lim
r→0+

f(r cos θ, r sin θ) = 0,

which does not depend on θ, so we choose l = 0.
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Step 2: Criterion. We have

|f(r cos θ, r sin θ) − l| = r| cos θ|
8 + cos

(
1

r3(cos3 θ−sin3 θ)

) ⩽
1
7r

3.

Choosing ψ(r) = 1
7r

3, we see that ψ satisfies the hypotheses of the squeeze theorem,
so

lim
(x,y)→(0,0)

f(x, y) = 0.

As a side note, this function is a perfect example where the squeeze theorem in Carte-
sian coordinates works well. We have

|f(x, y) − l| ⩽ |x|
7 .

Choosing φ(x) = |x|
7 , we obtain the desired result.

Example 2.16. Now, consider f : R2\{(0, 0)} → R defined by

f(x, y) = x2y

x2 + y4 .

Let’s discuss the limit

lim
(x,y)→(0,0)

f(x, y).

We switch to polar coordinates.
Step 1: Directional Test. We compute

lim
r→0+

f(r cos θ, r sin θ) = lim
r→0+

r3 cos2 θ sin θ
r2 cos2 θ + r4 sin4 θ

= lim
r→0+

r cos2 θ sin θ
cos2 θ + r2 sin4 θ

.

If cos θ = 0, the limit is 0 since the numerator is zero. If cos θ ̸= 0, we obtain
0

cos2 θ
= 0.

Thus,

lim
r→0+

f(r cos θ, r sin θ) = 0,

so we choose l = 0.
Step 2: Criterion. We have

|f(r cos θ, r sin θ) − l| = r cos2 θ| sin θ|
cos2 θ + r2 sin4 θ

.

We estimate the denominator from below. In such cases, we usually use the fact that
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r2 sin4 θ ⩾ 0. This is a finer estimate than using cos2 θ ⩾ 0, since as r → 0, the
term r2 sin4 θ vanishes. If we were to use cos2 θ ⩾ 0 directly, we might introduce an
unnecessary error of order 1, for example, when θ = 0.

Thus,

|f(r cos θ, r sin θ) − l| = r cos2 θ| sin θ|
cos2 θ + r2 sin4 θ

⩽
r cos2 θ| sin θ|

cos2 θ
= r| sin θ| ⩽ r.

Taking ψ(r) = r, we see that the criterion is satisfied, and

lim
(x,y)→(0,0)

f(x, y) = 0.

Example 2.17. Let f : R2\{(0, 0)} → R be defined by

f(x, y) = xy2

x2 + y4 .

Let’s discuss the limit

lim
(x,y)→(0,0)

f(x, y).

We switch to polar coordinates.
Step 1: Directional Test. We compute

lim
r→0+

f(r cos θ, r sin θ) = lim
r→0+

r3 cos θ sin2 θ

r2 cos2 θ + r4 sin4 θ

= lim
r→0+

r cos θ sin2 θ

cos2 θ + r2 sin4 θ
.

If cos θ = 0, the limit is 0 since the numerator is zero. If cos θ ̸= 0, we obtain
0

cos2 θ
= 0.

Thus,

lim
r→0+

f(r cos θ, r sin θ) = 0,

so we choose l = 0.
Step 2: Criterion. We have

|f(r cos θ, r sin θ) − l| = r| cos θ| sin2 θ

cos2 θ + r2 sin4 θ

⩽
r| cos θ| sin2 θ

cos2 θ

= r sin2 θ

| cos θ| .
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Here, we used the same estimate as before:

cos2 θ + r2 sin4 θ ⩾ cos2 θ.

However, we run into a problem: the expression in θ, sin2 θ
| cos θ| , is unbounded.

If we instead use another lower bound for the denominator,

cos2 θ + r2 sin4 θ ⩾ r2 sin4 θ,

we arrive at

|f(r cos θ, r sin θ) − l| ⩽ | cos θ|
r sin2 θ

.

However, this expression is even worse. Not only is | cos θ|
sin2 θ

unbounded, but if cos θ ̸= 0,
we obtain a term of the form r−1, which diverges to infinity instead of converging to
zero.

Step 3: Finding a Different Approach to (0, 0) That Yields a Different Result.
When dealing with a denominator containing different powers of x and y, a good

approach is to examine paths of the form (tα, tβ) and choose α and β so that the
powers of x and y in the denominator match.

In this case, we want the power of x2 = t2α to match that of y4 = t4β. Setting
β = 1 and α = 2, we obtain 2α = 4β = 4. Then,

lim
t→0

f(t2, t) = lim
t→0

t4

t4 + t4
= 1

2 .

Since this result differs from the directional test, the limit does not exist.
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